

Computer Simulation in Healthcare Overview

James C. Benneyan, PhD, Director

Healthcare Systems Engineering Institute CMS Innovation Healthcare Systems Engineering Center NSF Center for Health Organization Transformation AHRQ Patient Safety Learning Laboratory Center Northeastern University, Boston MA

www.HSyE.org

Intro Uses Types

Healthcare Systems Engineering Institute

www.coe.neu.edu/healthcare

What is systems engineering?

Types of simulation models

Type of model	Description	Example(s)
Monte Carlo models	Randomness & complex logic, but no time dependencies	Gambling games Statistical analysis
Discrete event models (DES)	System state changes at discrete points in time due to arrivals, departures, & other process logic	Manufacturing flow Queuing models
Cellular automata models	Adjacency transitions (from 1 cell or geographic area to another)	Population growth Disease spread (flu)
Continuous (CES) & mixed discrete- continuous	System state is continuously changing (mixed models have discrete & continuous changes)	Oil refinery, inputs & withdrawals Sauna temperature
System dynamics models (aka CES)	System interactions represented as continually changing relationships	Economy, money flows, policy studies
Agent based models	Entities in system act independently (as 'agents') based on current system state	Human behavior

What is a model...?

- An artificial representation of the real world
- Perhaps idealized, simplified; hopefully useful
 "All models are wrong, some are useful"
 G.E.P. Box

Healthcare Systems Engineering Institute

What is a simulation?

Healthcare Systems Engineering Institute

Simulation basic ideas

Healthcare Systems Engineering Institute

www.HSyE.org

Model accuracy - Simulation vs real data

Observation unit simulation

Validation Output: Comparison of Simulation Results to Real Process

Healthcare Systems Engineering Institute

How is simulation used?

- 1. Investigate "what if" questions (change tests)
- 2. Identify improvement opportunities
- 3. Identify critical process parameters
- 4. Optimize processes
- 5. Initial off-line starting conditions to fine-tune in practice
- 6. Demonstrate general process design concepts
- 7. Convince others of idea(s)

Basic terminology

<u>Entities</u> – things that flow through the model

- Patients, records, info, etc

- <u>Resources</u> things that entities occupy ('seize')
 Patients, records, info, etc
- <u>Attributes</u> features of entities
 - Age, gender, acuity, # prior readmits, new/established,...

Queue, seize, delay, release

+ Entities 11 esources

A simple patient flow model

Example: Outpatient clinic flow

Analysis Results & Accuracy

Process Logic

Benneyan, 1997, An introduction to using computer simulation in healthcare, Jrl Society Health Systems, 5(3):1-15.

Importance of replications

Observation Unit Capacity Model (every day is different...)

Healthcare Systems Engineering Institute

www.HSyE.org

Macro system example

- New facility master space planning
- Queuing flow simulation

 Cathcord 1

 Image: Cathc

5

Healthcare Systems Engineering Institute

www.HSyE.org

Regional EMS example

- Ambulance location and routing
- Maximize survival probabilities

Known data

D Demand Node

(H) Hospital Facility

(5)

Transport Journe

Vehicle Base Statio

Medical decision making example

Questions: Accuracy, cost, workload?

Benneyan, Kaminsky, Statistical and economic models for analysis and optimal design of screening policies for cervical cancer, *Ann Ops Res 67(1): 235-285* 1996

Healthcare Systems Engineering Institute

Example

Bird flu simulation (<u>click here</u>)

Healthcare Systems Engineering Institute

www.HSyE.org

Health policy examples

Organ Transplant Multiple Offer Policies

- Simultaneous offers to improve utilization & time till transplant
- Model-informed policy debate

American Journal of Transplantation 2010; 10 (Part 2): 1081–1089 Wiley Periodicals Inc.

DonorNet and the Potential Effects on Organ Utilization

Figure 1: Mean ischemic time for transplanted organs, by organ and time period.

Spread of Epidemics (or improvements)

System dynamics example

- Typically macro level or policy analysis
- Concepts of 'flows', 'stocks', 'rates', feedback loops
- Based in differential equations
- Also very useful thinking exercise

System dynamics example

Healthcare Systems Engineering Institute

Monte Carlo Integration

- General logic (proportion area method)
- Examples
- Other functions, triangular, others.
- 2nd method for Pi
- 2nd method (expected value method)

MC Integration cont'd

Examples

<u>Since</u>: Fraction of total area under curve $= \frac{\text{Area under curve}}{\text{Total area of rectangle}}$ <u>Then</u>: Area under curve = Fraction under curve * Area of rectangle

Conducting simulation studies

Healthcare Systems Engineering Institute

www.coe.neu.edu/healthcare

Building simulations = iterative process

Healthcare Systems Engineering Institute

www.HSyE.org

Lifecycle

- 1. Problem definition
- 2. Model development
- Verify & validate model is correct and produces reasonable results
- 4. 'Pilot runs' to obtain preliminary results
- Experiments and results ('production runs')
- 6. Implement, test in vivo

Model development process (clabsi)

Healthcare Systems Engineering Institute

How is logic represented

(what does/did other software look like)

Healthcare Systems Engineering Institute

www.coe.neu.edu/healthcare

Some common software

- 1. ARENA
- 2. ProModel, MedModel
- 3. FlexSim
- 4. Process Simulator
- 5. Simul8
- 6. Extend
- 7. AnyLogic

Other software – same model

Healthcare Systems Engineering Institute

www.HSyE.org

Examples of output

Time per Entity	—— — А					
VA Time Per Entity	Average	Half Width	Minimum Average	Maximum Average	Minimum Value	Maximum Value
Check In	1.8398	0.02	1.7291	1.9331	1.0192	2.9552
Check Out	3.5923	0.07	3.2466	3.8926	1.0710	6.8977
Exam 1A and 1B Doctor	19.1350	1.92	13.6526	32.5950	0.00	114.77
Exam 2A and 2B Doctor	44.9945	0.23	43.7401	45.9167	40.2320	49.7469
Exam 3A and 3B Doctor	20.9338	1.68	14.6840	31.4969	0.00	80.8902
Exam 4A and 4B Doctor	24.9455	1.15	18.4053	30.5419	0.00	60.3987
Prep for MD	7.0192	0.16	6.2871	7.8066	0.00	19.4944
Wait Time Per Entity	Average	Half Width	Minimum Average	Maximum Average	Minimum Value	Maximum Value
Check In	10.0603	1.84	3.9458	20.2454	0.00	51.3141
Check Out	10.2126	2.01	3.1379	22.5383	0.00	55.0713
Exam 1A and 1B Doctor	38.3450	13.52	6.4692	123.12	0.00	251.20
Exam 2A and 2B Doctor	96.6793	10.27	38.8139	156.74	0.00	276.30
Exam 3A and 3B Doctor	38.6825	11.12	9.2126	89.7540	0.00	192.72
Exam 4A and 4B Doctor	40.7290	10.45	4.2204	105.60	0.00	157.70
Prep for MD	7.0415	1.43	2.5603	14.6382	0.00	43.8796

SIMUL8

n e	Minimum Value	Maximum Value					e		e		nes		
4	0.00	51.3141					i E		별		Ц,	Ë	
3	0.00	55.0713					<u> </u>		2		B		
2	0.00	251.20					ner		eni		ner	Ĕ	
4	0.00	276.30			ø	a a	đ	e u	ð	Ĕ	ð		
0	0.00	192.72	Size	Size	e Size ue Siz	ue SIz	-zero) ing Tir	1 <u>–</u>	ିତ		e e	E	
0	0.00	157.70	9	e o				Lin zer	Ē	Ň	s l		
2	0.00	43.8796	Met	nen	gue	Mer	<u></u>	nen	ģ	gre	Per	Les	
			Minimum Q	Average Q	Maximum o	Minimum Q	Minimum (P	Average Q	Average (N	Maximum O	Number of	% Queued	
Queue for Check In		0	1.824	6	0	0.414	9.597	10.812	22.54	79	52.809		
Queue for Prep for MD		0	0.864	5	0	0.042	4.877	6.603	19.409	65	77.273		
Queue for Exam 1A Doctor		0	0.356	3	0	0.263	6.224	14.937	37.668	10	75		
Queue for Exam 2A Doctor		0	6.764	11	0	19.772	160.431	176.474	313.482	10	9.091		
Queue for Exam 3A Doctor		0	0.646	3	0	6.981	19.992	29.988	55.439	10	46.667		
Queue for Exam 4A Doctor			0	2.368	6	0	15.034	45.539	48.218	122.982	17	5.556	
Queue for Check Out		0	1.021	6	0	0.275	8.193	9.199	26.179	57	56.25		

Show output report

Healthcare Systems Engineering Institute

www.HSyE.org

Excel model (OR-to-PACU flow)

- Excel Monte Carlo file
- Scheduled upstream work (elective surgery, chemo labs)
- Partial or full flow to down stream process (eg, PACU recovery, infusion)
- Process variations causes log jams, delayed starts, etc
- Play around with schedule changes to avoid potential problems

Iterative process – Obs Unit bed demand

LOS distributions by arrival time

Healthcare Systems Engineering Institute

www.HSyE.org

After adjusting for non-constant arrival patterns

Regression concept:

- Run model under different settings
- Terms with largest coefficients have largest impact on performance measure

Our pediatric case study

Run	MAs	Rooms	MDs	Waits	MD utilization	Cost
1	1	2	1			
2	1	2	3			
3	1	4	1			
4	1	4	3			
5	3	2	1			
6	3	2	3			
7	3	4	1			
8	3	4	3			
9	2	3	2			

Fall '13 example – regression results

Healthcar	e Simulatio	n DOE/Opt	imization e	example						
		results	Bounds			Relative				
"Decision variables"		Lower	Upper		Cost units					
# MDs =	X1 =	8	2	8		2				
Rooms =	X2 =	7	1	8		1		Cost		
Nurses =	X3 =	2	2	8		1	ι	Upper bound		
						25	<	25		
Performar	nce measur	es								
mean	=	44.495	sd							
variance	=	60.183	7.76					MDs		
					MDs	MDs	Rooms	Rooms		
		MDs	Rooms	Nurses	Room	Nurses	Nurses	Nurses		
	Regression coefficients									
	intercept	X1	X2	ХЗ	X1X2	X1X3	X2X3	X1X2X3		
mean	69.88	-3.344	-1.185	-1.65	0.043	0.426	-0.229	0.062		
Variance	603.07	-51.616	-22.959	-36.959	-1.168	4.274	-0.368	0.954		

Healthcare Systems Engineering Institute

Benneyan: Simulation methods

Generating Events

 How simulate a coin toss, dealt card, chosen door, or baseball "at-bat"?

Program development & Typical outline

Program Development

Flow chart Pseudo-code Code Start simple, validate with known results Build in complexity iteratively

Typical MC Program Structure

Variable declarations Input prompts Initializations **Replication** loop **Process** logic Data collection & counters Repeat until condition is met Statistical calculations Output results End

Example

Initialize Total = 0 Initialize TotalSqr = 0 Initialize NumReps = 0 Input Prompt: DesiredReps (preset or get from user)

Do Until NumReps = DesiredReps

Program logic... produce 1 value of performance measure X

```
Let NumberReps = NumberReps + 1

Let Total = Total + X

Let TotalSqr = TotalSqr + X^2

Repeat loop

Let Average = Total / NumberReplications

Let Variance = [TotalSqr - NumReps*(Average)^2)]/(NumReps-1)

Compute or look up T for sample of size n

Let HalfWidth = T*Variance^0.5/NumReps

Print results
```

Healthcare Systems Engineering Institute

Wrap up

Healthcare Systems Engineering Institute

www.coe.neu.edu/healthcare

Remember Einstein's advice

Everything should be made as simple as possible, but not simpler.

Albert Einstein

Healthcare Systems Engineering Institute

www.coe.neu.edu/healthcare