An Integrated Agent-Based and Queueing Model for the Spread of Outpatient Infections

Capstone Design Team: Mohammed Alshuaibi Guido Marquez Stacey Small Cory Stasko

Sponsor: Dr. James Stahl

Advisor: Dr. James Benneyan

Healthcare-Associated Infections

Inpatient

They're common.
 ➤ 1.7 million per year

2. They're costly.
> 99,000 deaths per year
> \$5B medical cost per year

3. It's getting worse.
 ➢ 36% increase over last 20 years

R. Monina Klevens et al. Estimating Health Care-Associated Infections and Deaths in U.S. Hospitals, 2002. CDC Public Health Reports March-April 2007.

Healthcare-Associated Infections

Inpatient

Outpatient

- They're common. 1. How bad is it?
 ▶ 1.7 million per year
- 2. They're costly.
 2. What factors
 > 99,000 deaths per ycomtribute?
 > \$5B medical cost per year
- 3. It's getting worse.3. What poicies are most
 ➢ 36% increase over effe∂tive?
 years

Healthcare-Associated Infections at MGH Urgent Care Clinic

Sponsor Objectives:

- Investigate ways to reduce the spread of infection in outpatient clinics
- Develop generalizable knowledge in addition to specific solutions

AIM Statement

Test potential methods for reducing infection transmission

with a focus on compartmentalization and hand sanitization

measured in terms of system-wide exposure and performance.

Five Opportunities for Compartmentalization In terms of

- Environment / Equipment
- Personnel

Model and Experimentation

Experimental Variables

- Compartmentalization
- Hand Sanitization Rates
- Resource Reduction

Sensitivity Variables

- Incoming Incidence Rates
- Cross Contamination Rates
- Initial Utilization Levels

Integrated Risk Model

System Metrics

- Infection Exposures
- System Performance
- Feasibility

Pareto Optimal Improvement Scenarios

Pareto Optimal Improvement Scenarios

Sorting Algorithm Parameterization

Sorting Algorithm Parameterization

Recommended Policies

Patient Sorting Type	None	Random	Risk-Based
Compartmentalization Level	None	Early Medium	High
Hand Sanitization	Staff +5%,	Staff +5%	Staff +10%, MD
Improvement	MD +10%		+10%, Nurse +8%

Triple Aim Impact

Patient Sorting Type	None	Random	Risk
Compartmentalization Level	None	Early Medium	High
Hand Sanitization	Staff +5%,	Staff +5%	Staff +10%, MD
Improvement	MD +10%		+10%, Nurse +8%
Cost Savings	Additional	Additional	Additional
	Treatment	Treatment	Treatment
	Avoided	Avoided	Avoided
	(\$56,300)	(\$96,400)	(\$160,700)
Quality	Increased	Increased	Increased
	Waiting Time	Waiting Time	Waiting Time
	(None)	(5,100 Hours)	(10,500 Hours)
Health	21% Reduction in Exposure	36% Reduction in Exposure	61% Reduction in Exposure

Generalized Findings

 Proof of concept: queueing and agentbased infection spread model

- Proof of concept: queueing and agentbased infection spread model
 - Tradeoff between efficiency and risk

- Proof of concept: queueing and agentbased infection spread model
 - Tradeoff between efficiency and risk
 - Many assumptions necessary for such a model

- Proof of concept: queueing and agentbased infection spread model
 - Tradeoff between efficiency and risk
 - Many assumptions necessary for such a model
- Diminishing returns of the same intervention

- Proof of concept: queueing and agentbased infection spread model
 - Tradeoff between efficiency and risk
 - Many assumptions necessary for such a model
- Diminishing returns of the same intervention
 - Need for multiple cross-functional interventions

Generalized Findings

- Proof of concept: queueing and agentbased infection spread model
 - Tradeoff between efficiency and risk
 - Many assumptions necessary for such a model
- Diminishing returns of the same intervention
 - Need for multiple cross-functional interventions
- Risk based sorting only worthwhile for extensive compartmentalization

Pareto Optimal Improvement Scenarios

- Proof of concept: queueing and agentbased infection spread model
 - Tradeoff between efficiency and risk
 - Many assumptions necessary for such a model
- Diminishing returns of the same intervention
 - Need for multiple cross-functional interventions
- Risk based sorting only worthwhile for extensive compartmentalization
- Compartmentalize where resources are least constrained

Further Questions

 What opportunities do clinics actually have for "compartmentalization"?

Further Questions

- What opportunities do clinics actually have for "compartmentalization"?
- How to best model different kinds of infections/risk?

Further Questions

- What opportunities do clinics actually have for "compartmentalization"?
- How to best model different kinds of infections/risk?
- How will models be validated, improvements measured?

Further Questions

- What opportunities do clinics actually have for "compartmentalization"?
- How to best model different kinds of infections/risk?
- How will models be validated, improvements measured?
- At what level is it best to conduct this analysis?

Front

Desk

Further Questions

Further Questions

- What opportunities do clinics actually have for "compartmentalization"?
- How to best model different kinds of infections/risk?
- How will models be validated, improvements measured?
- At what level is it best to conduct this analysis?
 - Where data, model, and action can align...

Thank you.

[404 Slide Not Found]

Triple Aim Impact

	Compartmentalization Advantages	Compartmentalization Disadvantages	
Cont	HAIs require additional treatment/admission	Dividing resources can limit throughput, revenue	
Cost	Providers out sick reduce throughput, revenue	Compartments may require additional staff	
Quality	Fewer exposures, fewer infections	Compartments may increase waiting times	
Compar ca	Compartments may improve care coordination		
Health	Fewer infections introduced into the population	[No disadvantages identified]	