

Healthcare Reliability Science Deliberate Design

James C. Benneyan, PhD, Director

Healthcare Systems Engineering Institute
CMS Innovation Healthcare Systems Engineering Center
NSF Center for Health Organization Transformation
Northeastern University, Boston MA

www.HSyE.org

Systems Engineering domains

3 Core Areas

	Area	Focus	Typical methods
1	System/process design	Design (re-design) <i>new</i> system to meet certain functional criteria	Systems engineering Design for X Business process re-engineer
2	System/process improvement	Improve performance of existing system	Quality improvement Lean, six sigma, PDSA Statistical analysis Model-based improvement
3	System/process optimization	Optimize performance existing or new system	Mathematical optimization Computer simulation Machine learning Analytics

X = Manufacturing, dis-assembly, agility, reliability, quality, robustness, etc

BABY ON BOARD

Design for Reliability

Outline / Learning objectives

- 1. Context and definitions
- 2. 'Reliability science' (deliberate design)
- 3. Evidence-based bundles
- 4. Actual reliability engineering
- 5. Discussion

1. context and definitions

Types & definitions of reliability

Application Area	Focus, definition
Classic engineering- industry reliability	"Ability of a system or component to perform its required functions under stated conditions for a specified period of time"
	Time until failure of product or system.
	R(t) = P(T > t), MTTF, other statistical definitions
Measurement and instrument analysis (metrology)	Instrument and measurement process invariance (precision & accuracy, repeatability & reproducibility)
Assessment scale or survey reliability	Consistency among independent measurement methods, including temporal stability, form equivalence, and internal consistency. Kappa, etc
Healthcare process reliability	Time until a non-compliant (defect) event. Reliability = conformance rate. (how often get it right, NCPPM)

Simplified Definition of Reliability

"Failure free performance over time"

- Focus: Time between failures (longer is better)
- (Really a blending of reliability, quality, safety, and process capability concepts.)
 - Adapting concepts from study of industry, safety, and highly reliable systems
- Proving to be a useful framework in healthcare

"10-X" language

Decimal location

"10-1": Single digit failures per 10 opportunities
0.1 to 0.9 failure rate
(technically .1)

"10⁻²": Single digit failures per 100 opportunities
0.01 to 0.09 failure rate
0.0x
(technically .01)

"10-3": Single digit failures per 1000 opportunities
0.001 to 0.009 failure rate
(technically .001)

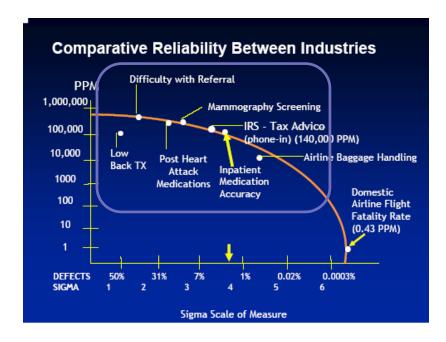
etc...

Reliability Levels

Specification - What reliability do you want?

Same basic concepts and how terminology relates

Reliability	Failure Rate	10-×	PPM (parts per million)	Sigma's
.9	.1	10 ⁻¹	100,000	1.64
.99	.01	10 ⁻²	10,000	2.58
.999	.001	10 ⁻³	1,000	3.29
.9999	.0001	10-4	100	3.89
.99999	.00001	10 ⁻⁵	10	4.42
.999999	.000001	10 ⁻⁶	1	4.89


Time to failure in other industries

Industry	Application / Component	MTTF (hours of use)
Aircraft engines	Failure of turbine blade (crack exceeding ¼ inch length)	10,000 hrs
Sleeve bearings Mechanical wear of bearing in a cooling fan due to friction		30,000 hrs
Computer chips	Time until chip fails	15,500 hrs
Power supply	Power inverters	156,585 hrs
	Switches	417,560 hrs
	Chargers	626,340 hrs
Telecommunications	Ethernet switches	1,053,439 hrs
	Modems	515,424 hrs

© 2004 Institute for Healthcare Improvement

Failure Rate	Outcome or Process Measure	
40-1	EBM-CMS conditions (e.g., beta blockers for MI)	
10 ⁻¹	Adverse events	
	Hospital readmissions	
10-2	Deaths in risky surgery	
	Polypharmacy in the elderly	
10 ⁻³	Ventilator associated pneumonia (2-8 VAP/1000 vent. days)	
10 '	Adverse drug events (1-6 ADE's / 1000 doses)	
10 ⁻⁴	Deaths in routine anesthesia	
10 ⁻⁵	Deaths from major radiotherapy machine failures	
10 ⁻⁶	Deaths from seismic non- compliance	

Reliability of Patient Safety

Estimates (IOM 1999, etc)

Medical errors & iatrogenic injury:

- 98,000 deaths/year
- 770,000 2 million patient injuries
- \$17 \$29 billion dollars

Adverse drug events (ADE):

- 770,000 to 2 million per year
- \$4.2 billion annually

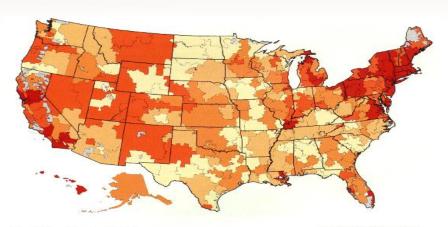
Hospital-acquired infections:

- 2 5 million NSI/year, \$3,000/case
- 8.7 million hospital days
- 20,000 deaths/year

More US deaths/year than for traffic accidents, breast cancer, & AIDS.

Endemic AE's

6-10% hospital patients suffer ≥ 1 serious adverse events


- Adverse drug events (ADE)
- Surgical site infections (SSI)
- Needle sticks
- Wrong side/site surgery
- Device-associated infections
 - Ventilator-associated pneumonia
 - Catheter & central line infections

Per episode average costs:

- ADE: \$4,000 \$5,000
- NSI: \$2,000 \$3,000
- VAP: 13 additional days & 30 -50% attributable mortality
- SSI: Can exceed \$14,000

2006 study: 195,000 deaths, \$6 billion/year

Practice reliability

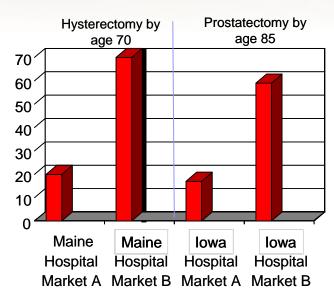
Map 6.5. Breast Sparing Surgery

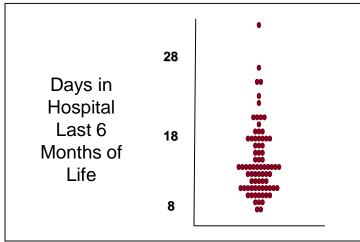
Breast sparing surgery was more widely and commonly used in the Northeast than elsewhere in the United States; regionally, its use was lowest in the South, Midwest, and Northwest.

■ 19.4 to 48.0% (61 HRI ■ 14.5 to <19.4% (60) ■ 11.3 to <14.5% (62) ■ 8.1 to <11.3% (59)

Compliance to Evidence Base

Estimated only ~55% of U.S. patients receive scientifically indicated care:


Acute: 54%


• Chronic: 56%

Preventive: 55%

McGlynn, et al: *The quality of health care delivered to adults in the United States.* NEJM 2003; 348:2635-2645

Wennberg, 2005, From study of patients with severe chronic illness who received most of their care in one of 77 "best" U.S. hospitals

'Bundle' example

The Science Journal of the American Association for Respiratory Care

COMPLIANCE WITH THE VAP BUNDLE ACROSS MULTIPLE INTENSIVE CARE UNITS

R. Wolff¹, K. D. Hargett¹, B. Green¹

Zone	Head of Bed	Stress DVT prophylaxis	Stress Ulcer prophylaxis	Daily Sedation Holiday	Readiness to Extubate	Total Bundle Compliance
SICU	99.4%	99.4%	99.4%	68.6%	53.8%	55.2%
CCU	83.8%	99.1%	100.0%	30.0%	61.5%	65.7%
CVICU	88.5%	98.6%	100.0%	64.6%	64.6%	65.6%
MICU	99.1%	99.5%	99.5%	85.6%	90.5%	83.1%
NICU	99.1%	98.3%	98.3%	56.7%	53.4%	61.5%
Hospital	94.0%	99.0%	99.4%	60.3%	64.8%	66.2%

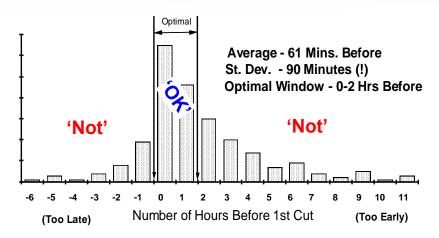
Many other examples...

Other bundle examples

AMI	CHF	CAP	CABG	TJ	VAP
ASA (aspirin) within 24 hrs	LVEF w ₁ assessed	O ² assessed within 24	First dose antibiotic 1	First dose antibiotic 1	Head of bed elevation
BETA blocker within 24 hrs Thrombolytics	ACE Inhibitor for LVSD w ₂ Detailed	hours Blood culture prior to abx	hour prior to first incision Appropriate antibiotic	hour prior to first incision Appropriate antibiotic	DVT prophylaxis Sedation
within 30 min PCI within 120	discharge w ₃ instructions	First dose of antibiotic	selection	selection	vacation PUD
minutes	Smoking cessation w ₄	within 4 hours Influenza	Discontinued antibiotics within 24	Discontinued antibiotics within 24	prophylaxis
ACE Inhibitor for LVSD	counseling	screening / vaccination	hours Use internal	hours	4 care
Smoking counseling		Pneumococ. vaccination	mammary artery (IMA)		elements
ASA at d/c BETA blocker		Smoking cessation	ASA at		
at discharge		counseling	discharge		

^{2.} Center for Medicare & Medicaid Services (CMS), "Clinical conditions and measures for reporting and incentives" 2003. Others: AHA, Leapfrog Group, National Quality Forum, AHQR, JCAHO Core Measures

Reliability in doing what is known

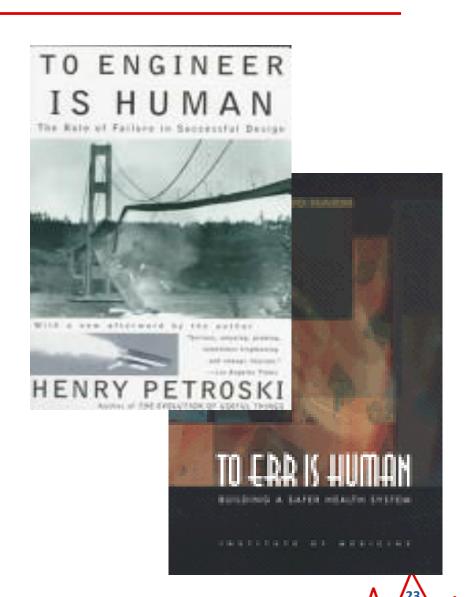

Recommended Care Received ≈ ½ 1

64.7%	Hypertension
63.9%	Congestive Heart Failure
53.9%	Colorectal cancer
53.5%	Asthma
45.4%	Diabetes
39.0%	Pneumonia
22.8%	Hip Fracture

Hand washing compliance rate

SSI Antibiotic Timing Example

Patient non-compliance


- No better: 36%² 50%³,⁴
- Discharge instructions, exercise, meds, diet, (eg, diabetes mgmt)
- ~ \$50 B drug hospitalizations
- ~ 40% nursing home admissions
- ~ \$2,000/patient/yr office visits
- Total ≈ \$177 billion/year²

1. McGlynn et al; 2. Chan DC et al; 3. World Health Organization; 4. National Council on Patient Information and Education

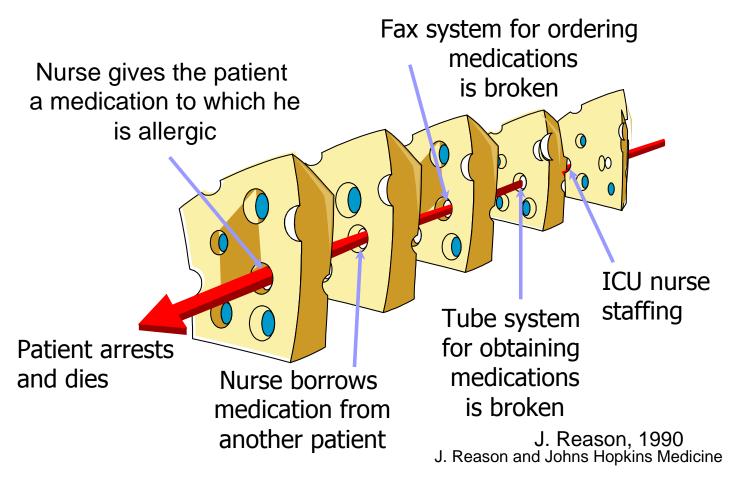
2. why not better

Desire vs. Design

- Will and good intentions (desire) alone insufficient
- Good well-meaning people are unreliable
- Human performance is fact of life
- Deliberate design, that exploits rather than ignores human factor

Good intentions, Bad designs

"To Err IS Human"

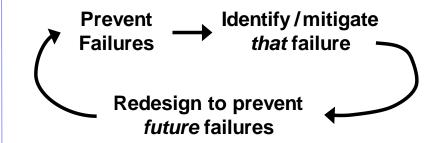


'Swiss Cheese' Model

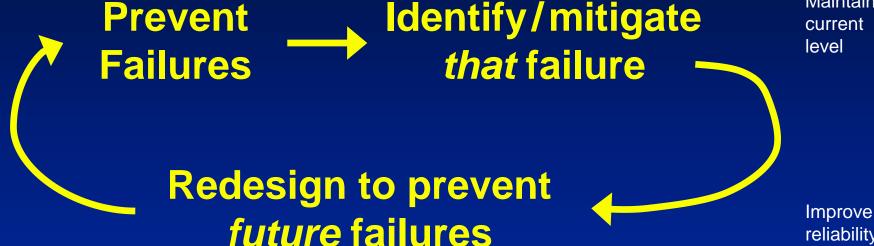
Medication Errors


3. reliability by design

Similar ideas

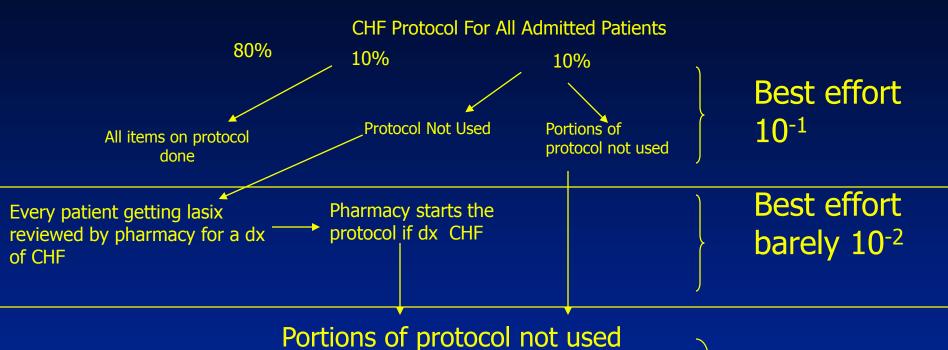

Quality Trilogy (Juran)

Tend to be better at fixing things gone wrong than preventing in 1st place


Reliability Model (IHI)

- 1. Prevention strategies
- 2. Identify, mitigate & minimize impact, recovery (QC, other methods)
- 3. Learn from failures, improve system (root cause & failure modes analysis)

3-Tier Reliability Design Model

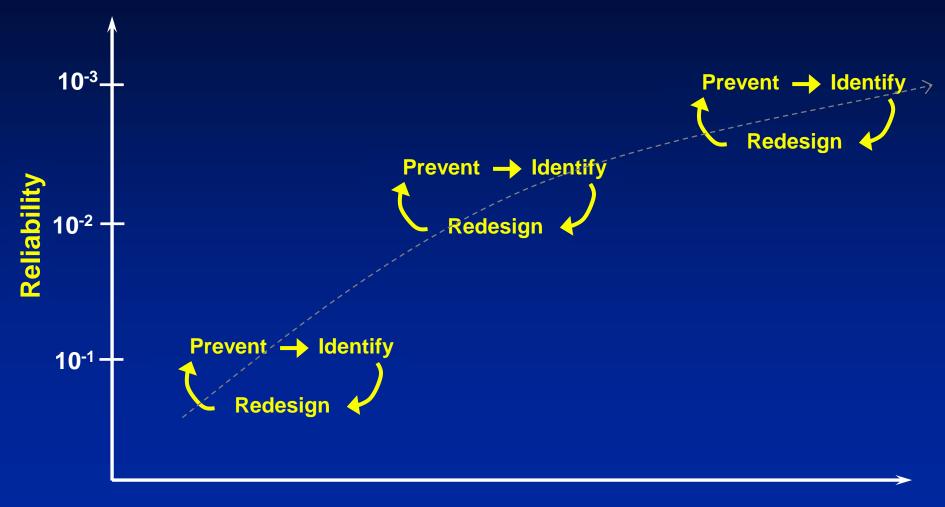

Maintain

Improve reliability

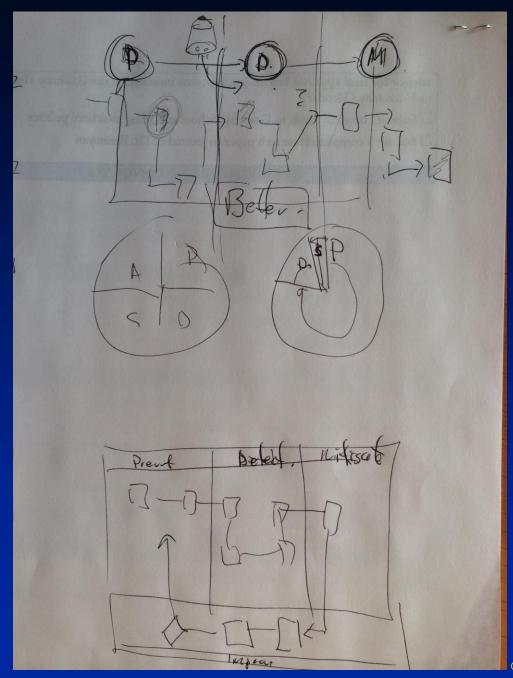
CHF Example

Prevent, Identify, Mitigate

Smoking advice (Global:All hospital patients admitted automatically referred to smoking cessation if smoker)


Detailed D/C instructions (If protocol on chart clerk prints out dc instruction sheet at discharge)

(highest failure modes)


ACEI use (If protocol on chart pharmacy checks for use of ACEI and calls MD if not ordered) Best effort 10⁻² to a barely 10⁻³

Reliability Growth Over Time

'Reliability design/science' model

Reliability	Stratogics	Measures		
tier	Strategies	Process	Outcome	
Prevent	•	•	•	
Detect	•	•	•	
Mitigate	•	•	•	
Redesign	•	•	•	

Example: Patient falls prevention

Doliobility tion	Colution Stratogics	Meas	sures
Reliability tier	Solution Strategies	Process	Outcome
Prevent (surveillance)	ChecklistPatient/family engagement	· Use of tool on rounds	Percent complete/ completedchecklists
Detect (assess risk)	· Assessment tool	· Usability of tool?	· Use of tool
Mitigate (mitigate risk)	 Intervention assignment per protocol to at-risk patients (Falls Prevention Toolkit?) 	 Development and usability of intervention strategies 	 Following/ compliance to intervention process / protocol
Redesign (refinement)	 MySafeCare Gap analysis, RCA, and redesign re: incomplete check lists etc 	 # patient suggestions via MySafeCare Number of RCAs conduction 	 Number of process improvements

MGH CLABSI Example

Deliability ties	Colution Stratogics	Measures		
Reliability tier	Solution Strategies	Process	Outcome	
Prevent (surveillance)	 Follow bundle by correct insertion, maintenance, access, and removal compliance 	% compliance to bundle	Reduce infections& resulting costsReducemortalities	
Detect (assess risk)	 Audits on all process measures Infection Control data Teamwork survey 	Survey data, # of audits done	Identify process shifts	
Mitigate (mitigate risk)	 Educate new staff about CLABSI Performance updates (flip board, emails, etc.) 	% of staff educated# of updates / month	■ Improve care	
Redesign (refinement)	 Residents discuss line removal on rounds Nurse and resident orientation addresses prevention techniques 	% of removals discussed% of lines taken out earlier	Number of process improvements	

Cumulative design principles

Reliability design strategies

Defect	Strategy		
Level	Prevent	Identify	Redesign
10 ⁻¹	Education Working harder Feedback Checklists, order sets		
10 ⁻²	Standardization Desired = default Opt-out vs opt-in Reminders Decision aids	Redundancy Automatic checks Others?	Some FMEA & RCA (but often ad hoc)
10 ⁻³	Forcing functions Less human reliance Hardwired processes	others?	More formal FMEA Formal redesign processes

Design Principle 1: Prevention / 10⁻¹ Concepts

Basic Strategies: Intent, Vigilance & Hard Work

- Common equipment, standard orders sheets
- **♦ Personal check lists**
- Working harder next time
- Feedback of information on compliance
- Awareness and training

NECESSARYbut not SUFFICIENT

EXAMPLE: CHF Measures

♦ Left ventricular function (LVF) assessment

- Detailed discharge instructions
- ACE inhibitor for LVSD

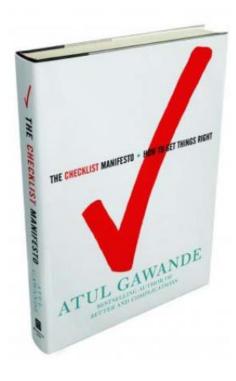
♦ Smoking cessation advice/counseling

Human Factors Strategies

- Decision aids and reminders built into the system
- Desired action the default (based on evidence)
- Redundancy
- Scheduling
- Takes advantage of habits and patterns
- Standardization of process

ESSENTIAL for movement to 10-2

Human Factors Concepts


Visual controls

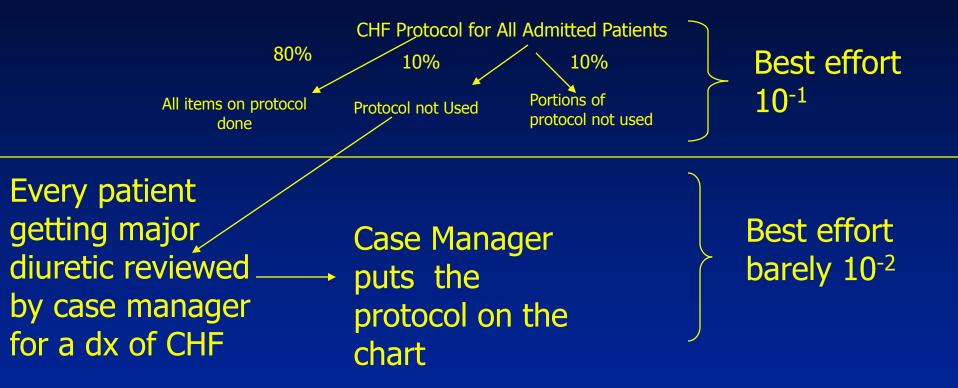
Reminders

Check lists

Design Principle 2: Identification / 10⁻² concepts

Redundancy Function

Develop a strategy to identify prevention defects

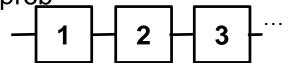

Develop a strategy to mitigate the defects identified

Develop a metric to measure standardization failure

CHF Reliability

Add Identify and Mitigate

4. reliability strategies


Simplification and redundancy strategies

Fewer steps

Process simplification (lean)

Suppose each step 90% failure

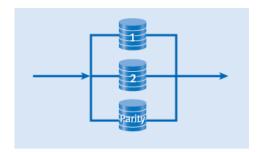
pro<u>b</u>

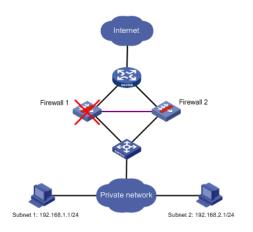
n	<u>Overall</u>	
1 1	ho .90 ¹ $pprox$ 90%	
2	$.90^2 \approx 81\%$	
3	$.90^3 \approx 73\%$	
4	$.90^4 \approx 66\%$ $-1 + 2 + 3 + 4 + 3$	
5	$.90^{5} \approx 59\%$ -1 -2 -3 -4 -5	-
10	$.90^{10}\approx35\%$	
20	$.90^{20} \approx 12\%$	

More redundancy

Suppose each step 40% failure prob

n	Overall
1	140¹ ≈ 60%
2	140 ² ≈ 84% — 140 ² ≈ 84%
3	140 ³ ≈ 94%
4	140 ⁴ ≈ 97%
5	140 ⁵ ≈ 99%
6	140 ⁶ ≈ 99.6%
8	1408 ≈ 99.9%
10	140 ¹⁰ ≈ 99.99%
15	$140^{15} \approx 99.9999\%$
18 🖣	1 - 40 ¹⁸ ≈ 99 99999%




Redundancy strategy examples

- Car brake system, airplane engines, pilots
- Computer back-up and RAID systems
- Extra bridge bolts and supports

- Multiple readings of lab results
- Double checking prescription order
- Sponge counts
- Others....?

Forcing Function strategies

Definition:

- Design feature completely eliminates failure possibility
- Forces desired outcome to occur automatically and absolutely

Notes:

- 'Poke Yoke' Toyota system
- Forcing scale some more absolute than others!

Examples

- ATM card return
- Car door locks (some)
- Transmission clutch
- Endoscope carrying case latches
- Soap dispensers to open doors
- Airplane "occupied" sign (locks door, turns on light)

Example

One-sigma compliance with "vacant" sign on bathroom door

Current System

Visual reminder

Redundancy

Low level process design ideas ineffective

Compare to airplane forcing function (lock, lights)

From Berwick "Escape Fire" 1999 plenary presentation, Commonwealth Fund website

Systems example

Leaky bucket example

- I can't pump diesel into my car, but station can put diesel in their gas pumps!
- ✓ Reminders
- ✓ Training, Awareness
- ✓ Redundancy
- Human fatigue
- Poor lighting at night
- Sense of urgency

Gas mix-up at Manchester station causes problems for cars

Abenaqui Carriers mixed up unleaded, diesel at Manchester Mart and Gas

Design Principle 3: Critical Failure Modes (Redesign)

Critical Failure Mode Function

- Develop a process to measure the most common failure modes
- Remodel the process based on the failure modes identified
- Iterative process over time

FMEA example

- Failure modes effects analysis
- RPN = Risk priority number = Severity × Occur × Detect

Function/	Potential	Potential Effect of Failure	SEV	Current Process Controls					
Requirement	Failure Mode			Potential Cause	Occur	Prevention	Detection	Det	R.P.N.
	Patient contracts virus/disease	Illness/Death	10	Unsanitary Conditions	8	None	None	1	80
Routing	ESA/patient get lost and patient diagnosis is delayed	Increase stress and patient leaves	4	Unstandardized Routes	2	Training	None	5	40
				Congestion in Hallways	3	Reopening hallways	Visual	9	108
				Not enough signs/help	8	None	None	5	160
	Delay in Care	Decline in patient health	7	Congestion areas	8	None	Visual	1	56
Loveut				Lack of Visibility	8	Nurse button	Visual	9	504
Layout				Clutter	10	None	Visual	9	630
				Non optimal layout	10	None	None	10	700
	Forms not filled out correctly	Unable to code, loss of money	6	No MD signature	6	Business Analyst	Visual	3	108
Dilling				No dictation	8	Business Analyst	Visual	3	144
Billing				Low "Level of Care"	10	None	None	5	300
				No Progress Notes	8	Coding Dept.	Visual	7	336

5.

actual reliability engineering

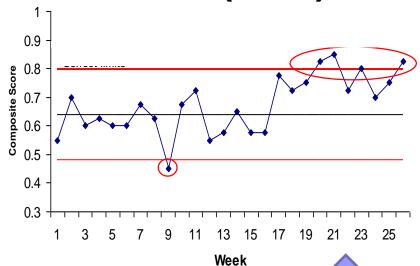
(and research)

Healthcare reliability (engineering)?

Is this really reliability (engineering)?

- No, not really
- Blending of quality, safety, process capability

Litmus tests:


- System stays in failed state until repaired or acted upon
- Can apply to just one item
- Not independent dichotomous failures

What would healthcare reliability engineering look like?

- Bath tub curve models
- Mean time between failures (MTTF)
- Availability models
- Maintenance models
- Degradation models
- Fault trees, block diagrams
- others

1. Bundle reliability measurement (SPC)

VAP measure	Comply rate
Head of bed elevation	61%
DVT prophylaxis	75%
Sedation protocol	43%
PUD prophylaxis	88%

Data Format

	Number		# Satisfying	g Measure <i>i</i>		Total	Total Met	Composite	
Week	Patients	X ₁	<i>X</i> ₂	<i>X</i> ₃	X ₄	Ops		Score	
1	10	6	8	2	6	40	22	55%	
2	10	4	9	5	10	40	28	70%	
3	10	7	5	4	8	40	24	60%	
4	10	5	7	4	9	40	25	62.5%	
5	10	6	8	3	7	40	24	60%	
etc	etc	etc	etc	etc	etc	etc	etc	etc	

Exact probability distribution

Let: $T_W = w_1 X_1 + w_2 X_2 + ... + w_J X_J$ and $F_W = T_W / N$, where $X_j \sim \text{bin}(n_j, p_j)$ and w_i 's unbounded

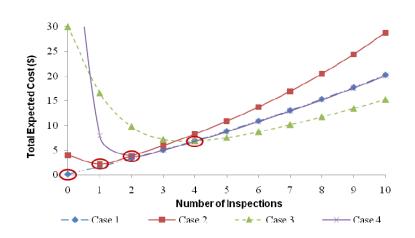
1 Then:

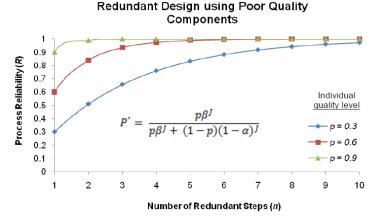
Means, Variances, Probability generating functions

2)

Probability distribution (convolution)

3)


Naïve approximations...?

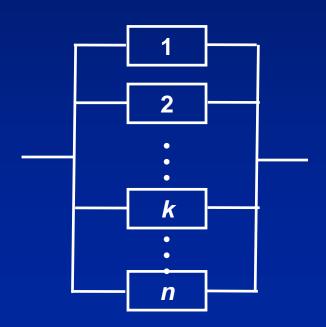

2. Optimal amount of redundancy

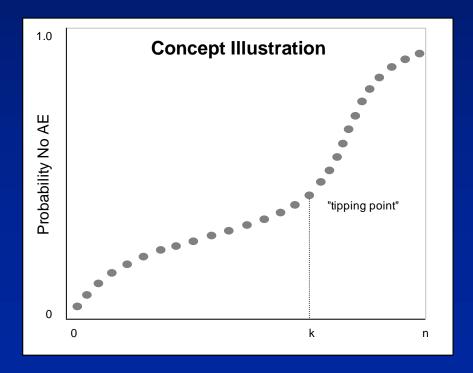
Optimal amount of re-inspection in reuseable medical equipment to prevent cross-contamination (in press)

Governing equations:

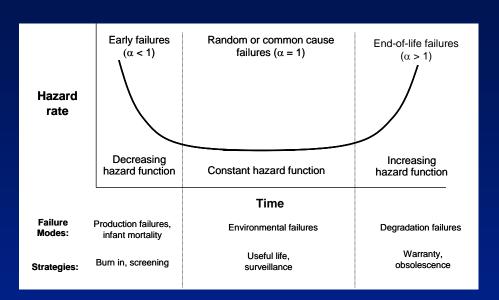
$$E(C) = \frac{k_1 \left[\frac{p\alpha(1-\beta^J) + (1-p)(1-\beta)\left[1 - (1-\alpha)^J\right]}{\alpha(1-\beta)}\right] + k_2 p \beta^J + k_3 (1-p)\left[1 - (1-\alpha)^J\right]}{(1-p)(1-\alpha)^J + p \beta^J}$$

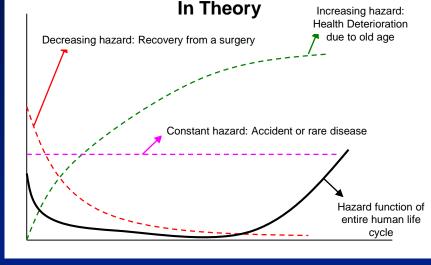
 $\textbf{Figure 10.} \ \textbf{Illustration of benefit of redundancy on overall system quality}$


Parameter	Meaning	Case 1	Case 2	Case 3	Case 4
<i>k</i> ₁	Inspection cost	\$1	\$1	\$1	\$1
k ₂	Failure cost	\$3	\$20	\$100	\$6000
<i>k</i> ₃	Rejection cost	\$10	\$5	\$1	\$5
p	Nonconformance rate	0.05	0.2	0.3	0.01
α	Type I error rate	0.05	0.1	0.05	0.05
β	Type II error rate	0.1	0.05	0.4	0.1
Optimal inspections		0	1	4	2
Savings per piece		n/a	\$1.81	\$23.11	\$56.08
Optimized outgoing defect rate		0.05	0.0137	0.01329	0.000112
k ₁ /k ₂ versus p		0.33 > 0.05	0.05 < 0.2	0.01 < 0.3	0.00017 < 0.01
Inspect? (yes/no)		No	Yes	Yes	Yes


Table 4. Example applications and immediate benefits of optimal multiple redundancy model. (Savings per piece indicates difference between optimal and zero inspection.)

k of n (and failover) reliability models

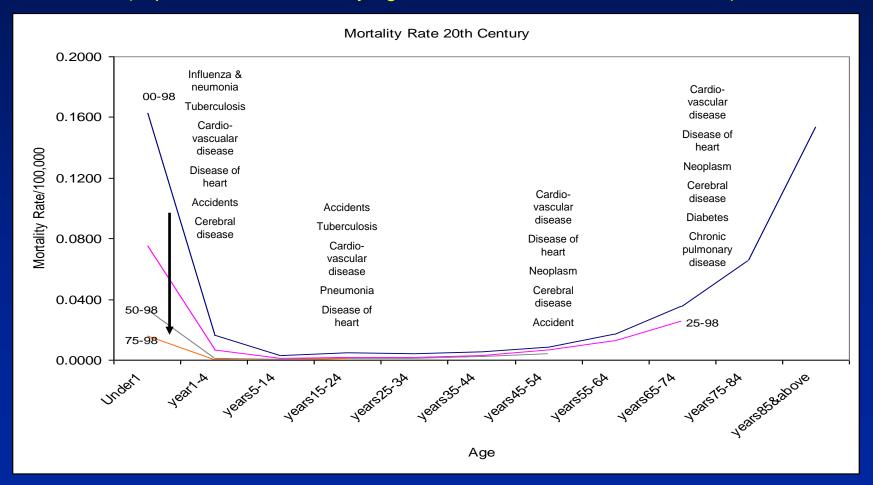

"Bundle effect"


- If at least k of n measures are met for a patient, the likelihood of adverse outcome significantly decreases
- Non-linear "bundle effect"

3. Reliability bathtub curves

$$h(t) = P(t < T < t + dt) = \frac{f(t)}{R(t)} = -\frac{d}{dt} [\log R(t)]$$

- Different causes and strategies for handling each phase
- Different shapes for different processes

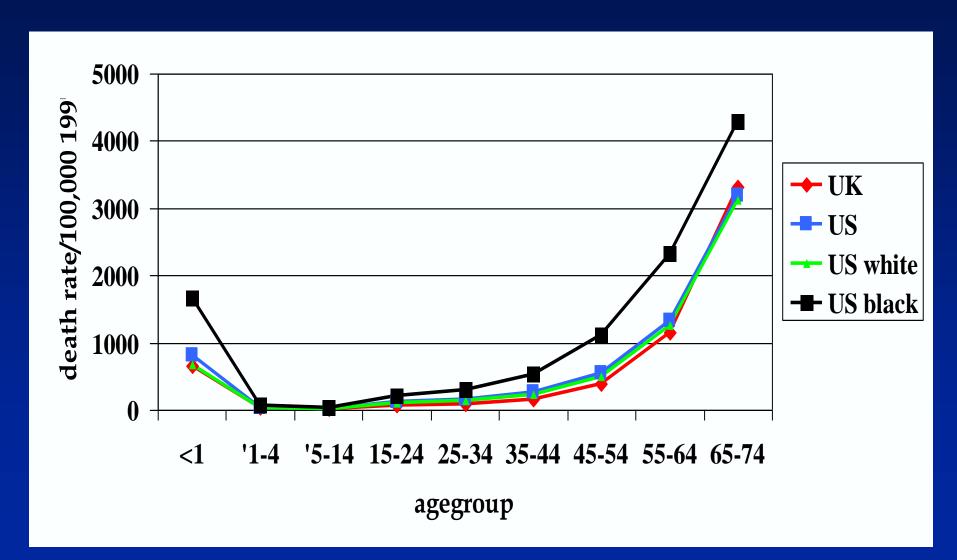

Potential Applications

- Mortality
- Heart failure and other chronic illnesses
- Hospital readmissions
- Returns to OR
- Cancer recurrence

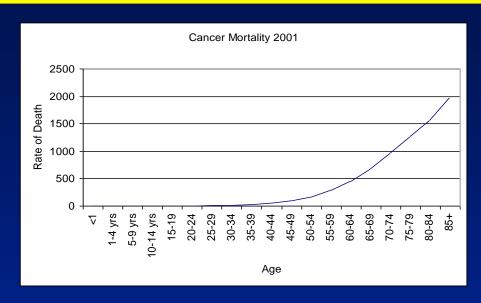
Mortality hazard function

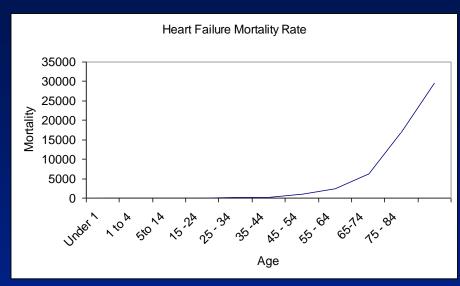
Mortality hazards by year of birth: 1900, 1925, 1950, 1975

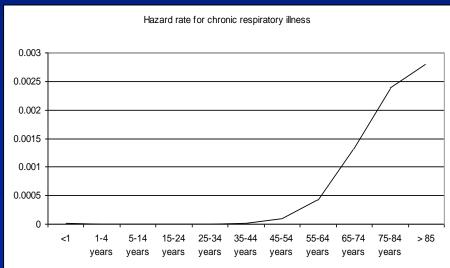
(Top reasons for death by age also are listed in rank order, 1900)

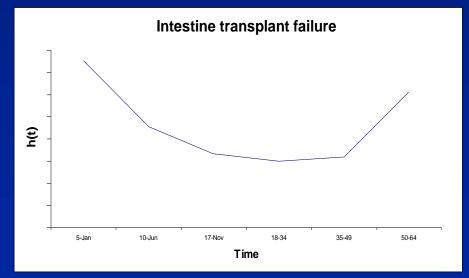


Root cause analysis

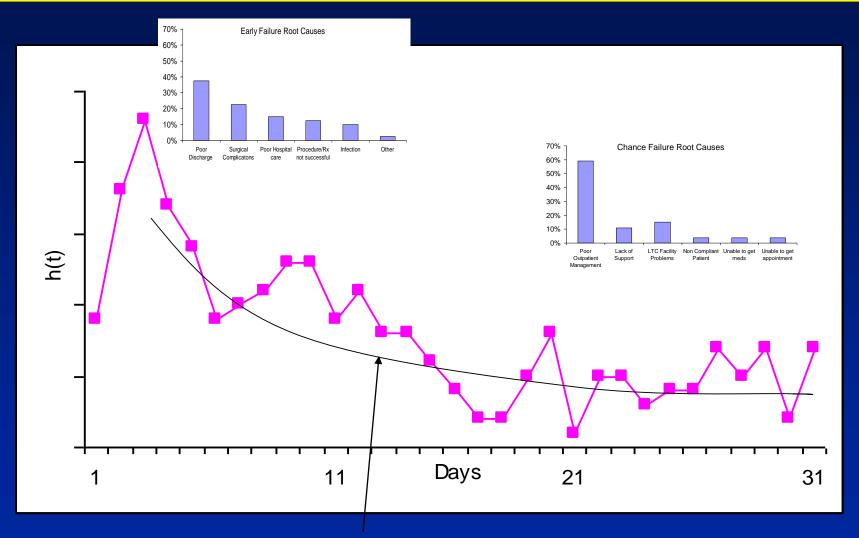

Top Reasons for Infant Mortality


1900	1925	1950	1975	1998
Influenza & pneumonia	Influenza & Pneumonia	Prenatal conditions	Birth injury and labor difficulties	Birth defects
Tuberculosis	Tuberculosis	Congenital anomalies	Congenital anomalies	Pre-term or low birth weight
Cardiovascular disease	Accidents	Pneumonia & influenza	Symptoms and ill defined conditions	Sudden infant death syndrome
Disease of heart	Cardiovascular system	Accidents and adverse effects	Pneumonia and influenza	Pregnancy complications
Accidents	Disease of heart	Disease of heart	Accidents	Respiratory distress syndrome
Cerebral disease	Cerebero vascular disease			Labor difficulties
				Infections
				Accidents
				Pneumonia or influenza

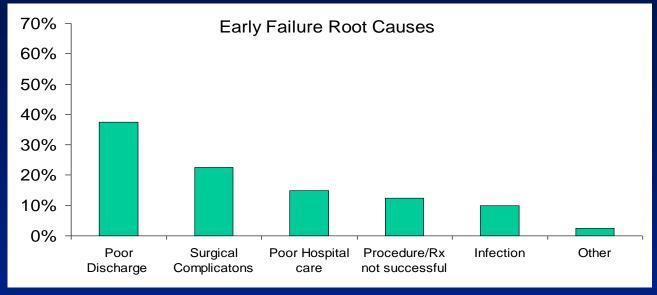

US and UK male death rates, 1997, for whole country (in and out of hospital) vs agegroup

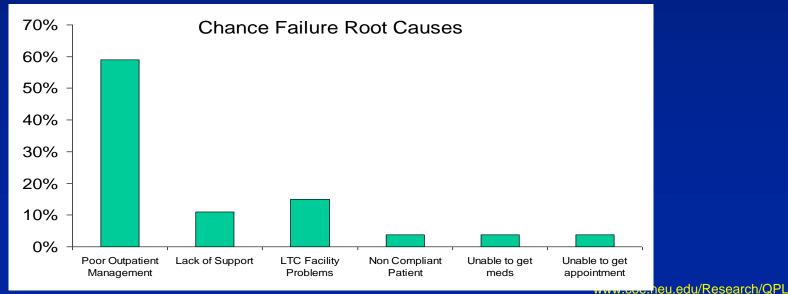


Disease hazard functions

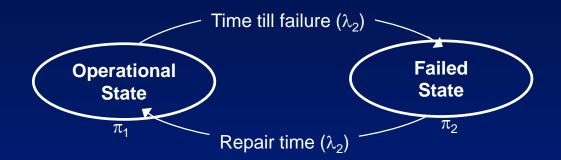


Process hazard functions




Data follow left-hand side of bathtub curve

Decreasing failure (readmit) rate as patient time from discharge increases

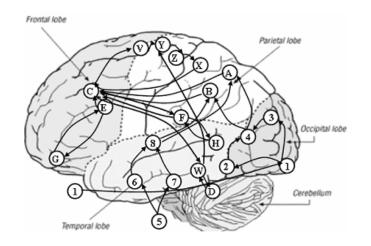

Failure modes, differing over time

What to focus on when

4. Availability and maintenance models

Human health

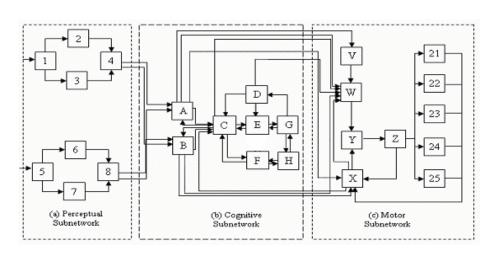
- Patient = complex system
- Failure = Degeneration from healthy to sick state
- Repair time = Treatment and cure time
- Availability = Proportion time in healthy state


Emergency Dept. Diversion

- ED = complex system
- Failure = ED deteriorates to point of closing
- Repair time = Time to get off of diversion
- Availability = Proportion time
 ED open to ambulances

6. Human factors engineering

Mental load & human performance (queuing network model)


Driving/pilot simulator (NASA)

$$PD = Aa(\int_{0}^{T} \frac{\lambda_m}{\sum_{j=1}^{Cm} \mu_{0,j}} dt)/T + b$$

$$TD = EF = PE = FR = Aa(\int_{0}^{T} \frac{\lambda all \ i}{\sum_{j=1}^{Call \ i} \mu_{0, j}} dt)/4T + b$$

$$MD = Aa(\int_{0}^{T} \frac{\lambda_{i} - vp, ap, c}{\sum_{j=1}^{C_{i} - vp, ap, c} \mu_{0, j}} dt) / 3T + b$$

Done!

